
Developing LPF’s Data Management Unit
Mission critical software development in LISA Pathfinder

José A Ortega Ruiz

Institut d’Estudis Espacials de Catalunya

6th LISA Symposium

José A Ortega Ruiz Developing LPF’s Data Management Unit



The Data Management Unit

Goals

M&C of LTP subsystems

Delivery of science data

Remote LTP control from
OBC/Earth

Challenges

Robustness/reliability

Timeliness (real time)

Small footprint

José A Ortega Ruiz Developing LPF’s Data Management Unit



Hard friends

’
Processor: limited power

ERC32, RISC based

12 MHz, 32 bit buses

FPGA: the world is flat

Memory mapped access to data
units. and communications buses.

Storage: secure but scanty

1Mb RAM memory, EDAC

2Mb EEPROM memory

64Kb PROM persistent storage

Communications: military security

MIL-STD-1553B standard
bus/controller

16 bits + 4 bit Hamming code
José A Ortega Ruiz Developing LPF’s Data Management Unit



Architecture: fitting and dependable

Problems and solutions

Fault tolerance →
Modifiability/Telecharge

Chicken & Egg → Split

Boot Software
In charge of booting the system,

setting up the communications link

with the OBC and managing the

application’s code.

Application Software
Gets the lion’s share of the DMU

operation time. Read from the

EEPROM, is totally replaceable

from Earth.

José A Ortega Ruiz Developing LPF’s Data Management Unit



As simple as possible...

Keep it simple and small

Hardware limitations (64 Kb
PROM)

Design limitations: KISS

Thus, minimal footprint and
complexity

... but not simpler

HAL (no room for COTS)

Communications layer

ASW Management

Housekeeping

Thus, (non-RT) OS-like
functions needed

José A Ortega Ruiz Developing LPF’s Data Management Unit



A baby OS

FPGA Magic Uniform access to HW in an
almost contiguous memory space. Some
addressing quirks.

Memory Manager Completes the world-is-flat
memory view and exposes shared state (System
Data Pool) to external systems (OBC).

Multiple tasks We use a simple, polling-based
scheduler. Asynchronous, interrupt-driven code
minimised.

Communications stack on top of the
memory-mapped MIL-BUS controller (which uses
its own RISC processor), a layered comms
protocol: HW, data-link and transport layer using
ESA’s PUS.

If all else fails, a HW watchdog protects us
against deadlocks.

High-level tasks Notably, the ASW Manager
handles remote patching of the ASW, the real
application, stored in (modifiable) EEPROM.

The BSW life-cycle ends when the ASW
Manager loads the ASW into RAM, in an
operation analogous to Unix’s exec.

José A Ortega Ruiz Developing LPF’s Data Management Unit



The Real (time) Thing

José A Ortega Ruiz Developing LPF’s Data Management Unit



An affordable OS

From the SW development’s point of view, the key ASW functionality is

data acquisition and post-processing from the Laser/Phasemeter at

100Hz ⇒ Real-time requirements

⇓
Since we have plenty (1Mb) of space, we can afford a COTS realtime

kernel: RTEMS.

José A Ortega Ruiz Developing LPF’s Data Management Unit



Quality matters

Quality Assurance is an integral process
encompassing all stages of the software
development life-cycle.

It relies on a series of engineering standards,
taylored from ESA templates, and covering
all key aspects of the development.

Testing is central. Defined in the
verification standards, includes thorough
unit testing (with processor emulators
support) during the coding phase, followed
by (module) integration tests (using
simulators for all external subsystems
communicating with the DMU) and, finally,
validation test against the mission
requirements.

A well defined engineering process is in
place, relying on key milestones (PDR,
CDR, TRR) with the participation of all
stakeholders.

All the process is captured in a solid,
peer-reviewed documentation set,
mimicking the waterfall development
model: System Requirements, Software
Requirements, Architectural and Detailed
Design, Validation and Verification plans.

José A Ortega Ruiz Developing LPF’s Data Management Unit



The software life-cycle (on paper and for real)

The ideal waterfall process (left) is the expected outcome of ESA’s
Engineering Standards. It works as a reporting template for the
final product, whose actual development is much closer to the
well-known spiral model (right). Especially noteworthy is (unit)
testing, which actually drives code writing, in the TDD spirit.

José A Ortega Ruiz Developing LPF’s Data Management Unit



Ward-Mellor structured design

José A Ortega Ruiz Developing LPF’s Data Management Unit



Tools galore: taming code complexity

Automatic tools

Code coverage (Cantata). 100% execution and branch.
Code linting (splint).
Metrics extraction: MacCabee, cyclomatic (Cantata).

Semi-automatic tools

In-code documentation (doxygen).
Test libraries, stubbing and drivers (Cantata).
Software and documentation distributed version control system
(GNU Arch).

Plain tools

GNU cross-compilation tool chain.
ERC32 emulator.
LATEX, a programmable documentation system.
MoinMoin WikiWiki, a centralised information repository.
Python: gluing it all together.

José A Ortega Ruiz Developing LPF’s Data Management Unit


